Abstract

The possibility of the rapid and global spread of Zika, chikungunya, yellow fever, and dengue fever by Aedes albopictus is well documented and may be facilitated by changes in climate. To avert and manage health risks, climatic and topographic information can be used to model and forecast which areas may be most prone to the establishment of Ae. albopictus. We aimed to weigh and prioritize the predictive value of various meteorological and climatic variables on distributions of Ae. albopictus in south-eastern Iran using the Analytical Hierarchy Process. Out of eight factors used to predict the presence of Ae. albopictus, the highest weighted were land use, followed by temperature, altitude, and precipitation. The inconsistency of this analysis was 0.03 with no missing judgments. The areas predicted to be most at risk of Ae. albopictus-borne diseases were mapped using Geographic Information Systems and remote sensing data. Five-year (2011–2015) meteorological data was collected from 11 meteorological stations and other data was acquired from Landsat and Terra satellite images. Southernmost regions were at greatest risk of Ae. albopictus colonization as well as more urban sites connected by provincial roads. This is the first study in Iran to determine the regional probability of Ae. albopictus establishment. Monitoring and collection of Ae. albopictus from the environment confirmed our projections, though on-going field work is necessary to track the spread of this vector of life-threatening disease.

Highlights

  • The Asian tiger mosquito, Aedes albopictus (Skuse, 1894) (Diptera: Culicidae), is known as a competent vector for at least 22 arboviruses, including Zika, dengue fever (DF), and chikungunya (Gratz, 2004; Wong et al, 2013; Collantes et al, 2015)

  • Potential Habitable Regions of Ae. albopictus Areas where Ae. albopictus has the potential to be present are shown in Figure 6 based on the representation of the Analytical Hierarchy Process (AHP) model

  • Only dengue has been detected in Iran (Chinikar et al, 2013), but in neighboring Pakistan, dengue, Chikungunya fever, and sporadic human cases of Zika have been reported along with the detection of infected mosquitoes (Kindhauser et al, 2016)

Read more

Summary

Introduction

The Asian tiger mosquito, Aedes albopictus (Skuse, 1894) (Diptera: Culicidae), is known as a competent vector for at least 22 arboviruses, including Zika, dengue fever (DF), and chikungunya (Gratz, 2004; Wong et al, 2013; Collantes et al, 2015). Several studies have warned about the rapid expansion of Ae. albopictus around the globe (Roiz et al, 2011; Rochlin et al, 2013; Kraemer et al, 2015). Specimens of Ae. albopictus have been observed in southeast Iran (Doosti et al, 2016), which was not unexpected after detecting dengue seropositivity in residents of the southeastern province of Sistan and Baluchestan (Chinikar et al, 2013). Chikungunya and Zika have been identified in mosquitoes and sporadically in humans in Pakistan, with positive serological tests signifying widespread population exposure to this virus (CDC, 2016; Kindhauser et al, 2016)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.