Abstract

Stainless steel factories are known to release particles into the atmosphere. Such particulate matter contains significant amounts of heavy metals or toxic inorganic compounds and organic pollutants such as, for example, Cr(VI) and polycyclic aromatic hydrocarbons (PAHs). The investigation of Cr(VI) and PAHs is often complicated by the associated matrix. Organic and inorganic pollutants present in stainless steel dust particles have been investigated with the same laser microprobe mass spectrometer according to two original methodologies. These analytical methods do not require time-consuming pretreatment (extraction, solubilization) or preconcentration steps. More specifically, experiments are conducted with a Fourier transform ion cyclotron resonance mass spectrometer coupled to an ArF (193 nm) or a tripled frequency Nd-YAG (355 nm) laser. Experiments at 355 nm allow the nature of the most frequently occurring Cr(III)/Cr(VI) compounds in dust particles to be identified. Examination of PAHs at 193 nm is assisted by the formation of pi-complexes with 7,7',8,8'-tetracyanoquinodimethane to prevent their evaporation in the mass spectrometer during analysis and to ensure an increase in sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.