Abstract

Oxyresveratrol is a potent antioxidant and free-radical scavenger found in mulberry wood (Morus alba L.) with demonstrated protective effects against cerebral ischemia. We analyzed the neuroprotective ability of oxyresveratrol using an in vitro model of stretch-induced trauma in co-cultures of neurons and glia, or by exposing cultures to high levels of glutamate. Cultures were treated with 25μM, 50μM or 100μM oxyresveratrol at the time of injury. Trauma produced marked neuronal death when measured 24h post-injury, and oxyresveratrol significantly inhibited this death. Microscopic examination of glia suggested signs of toxicity in cultures treated with 100μM oxyresveratrol, as demonstrated by elevated S-100B protein release and a high proportion of cells with condensed nuclei. Cultures exposed to glutamate (100μM) for 24h exhibited ~37% neuronal loss, which was not inhibited by oxyresveratrol. These results show that the two pathologies of high glutamate exposure and trauma are differentially affected by oxyresveratrol treatment in vitro. Further studies using oxyresveratrol in trauma models are warranted, as toxicity to glia could be beneficial by inhibiting reactive gliosis, which often occurs after trauma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.