Abstract

In the search for new metal-based drugs against diseases produced by trypanosomatid parasites, four organoruthenium(II) compounds [Ru2(p-cymene)2(L)2]X2, where L are bioactive 5-nitrofuryl-containing thiosemicarbazones and X = Cl or PF6, had been previously obtained. These compounds had shown activity on Trypanosoma brucei, the etiological agent of African trypanosomiasis. Because of genomic similarities between trypanosomatides, these ruthenium compounds were evaluated, in the current work, on Trypanosoma cruzi, the parasite responsible of American trypanosomiasis (Chagas disease). Two of them showed significant in vitro growth inhibition activity against the infective trypomastigote form of T. cruzi (Dm28c clone, IC50 = 11.69 and 59.42μM for [Ru2(p-cymene)2(L4)2]Cl2 and [Ru2(p-cymene)2(L1)2]Cl2, respectively, where HL4 = 5-nitrofuryl-N-phenylthiosemicarbazone and HL1 = 5-nitrofurylthiosemicarbazone), showing fairly good selectivities toward trypanosomes with respect to mammalian cells (J774 murine macrophages). Moreover, [Ru2(p-cymene)2(L2)2]Cl2, where HL2 = 5-nitrofuryl-N-methylthiosemicarbazone, was synthesized in order to evaluate the effect of improved solubility on biological behavior. This new chloride salt showed higher activity against T. cruzi than that of the previously synthesized hexafluorophosphate one (Dm28c clone, IC50 = 14.30μM for the former and 231.3μM for the latter). In addition, the mode of antitrypanosomal action of the organoruthenium compounds was investigated. The complexes were not only able to generate toxic free radicals through bioreduction but they also interacted with two further potential parasite targets: DNA and cruzipain, a cysteine protease which plays a fundamental role in the biological cycle of these parasites. The results suggest a "multi-target" mechanism of trypanosomicidal action for the obtained complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.