Abstract

AbstractArctic amplification (AA) is simulated by all global climate models, however the spread in the degree of projected warming is large and the underlying mechanisms driving it are poorly understood. The impact of the temperature dependence of immersion freezing on cloud feedbacks and AA is studied using NASA's GEOS‐5 model. Parameterizations that exhibit low ice‐nucleating particle (INP) concentrations in the high Arctic during summer are found to weaken the cloud‐phase feedback. This allows sunlight to readily melt sea‐ice in the summer, which decreases the stability of the lower troposphere, causing a decrease in wintertime cloud fraction over open ocean. Arctic amplification was found to span from ∼1.4 to >2.6, which spans 30% of the spread in AA in the coupled model intercomparison project models, depending on the temperature dependence of immersion freezing. These results suggest that summertime INP concentrations may provide an observational constraint on AA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.