Abstract

BaNi2As2 is a structural analog of the pnictide superconductor BaFe2As2, which, like the iron-based superconductors, hosts a variety of ordered phases including charge density waves (CDWs), electronic nematicity, and superconductivity. Upon isovalent Sr substitution on the Ba site, the charge and nematic orders are suppressed, followed by a sixfold enhancement of the superconducting transition temperature (Tc). To understand the mechanisms responsible for enhancement of Tc, we present high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements of the Ba1-xSrxNi2As2 series, which agree well with our density functional theory (DFT) calculations throughout the substitution range. Analysis of our ARPES-validated DFT results indicates a Lifshitz transition and reasonably nested electron and hole Fermi pockets near optimal substitution where Tc is maximum. These nested pockets host Ni dxz/dyz orbital compositions, which we associate with the enhancement of nematic fluctuations, revealing unexpected connections to the iron-pnictide superconductors. This gives credence to a scenario in which nematic fluctuations drive an enhanced Tc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.