Abstract

The convection-permitting climate model (CPCM), WRF-ARW at 4 km resolution, is able to capture the observed relationships between precipitation extremes and temperature (PT scaling) in western Canada. By analyzing the CPCM simulated PT scalings, we found they have robust patterns at different percentiles of precipitation intensity and even between the current and future climate. This is due to the stable annual cycle of the regional climate. The PT scaling pattern is physically governed by the amount of water vapour and the ascending velocity of air. Approximately 95% of the precipitation intensity variation can be explained by the vertical velocity and precipitable water in western Canada. The PT scaling for the current climate does not tell how precipitation extremes would response to a warmer climate. Trend scaling theory was utilized to estimate the intensification of precipitation extremes in a warmer climate. It shows that, in western Canada, the coast is particularly vulnerable to precipitation extremes under global warming. Precipitation extremes are projected to increase at a super Clausius-Clapeyron (CC) scale over the coast, approximately at a CC scale over the prairies and mountains, and a sub-CC scale over the northern region. The warming effect on precipitation extremes is even stronger when the concept of”wet-day trend scaling” is introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.