Abstract

AbstractCoalescence is a fundamental process in gas‐phase synthesis of nanoparticles (NPs), affecting their structure and resultant properties. Various metrics are currently used to measure the degree of coalescence in atomistic simulation studies, such as the radius of the neck formed between the NPs’ centers of mass, gyration radii, sphericity, and surface area changes. A common characteristic of such metrics is that they typically require additional, often painstaking, data manipulation. Here, a new descriptor is introduced, the Overall Reduced Change in Potential Energy (ORCiPE) between initially uncoalesced and coalesced configurations. To benchmark the descriptor, its definition is analogous to that of the Overall Change in Surface Area, a common and dependable metric. When no phase transition occurred, comparison with other metrics confirms the reliability of ORCiPE in coalescing Au NPs. Considering that potential energy is a standard output property in atomistic simulations, ORCiPE is proposed as a valuable and facile coalescence metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.