Abstract

Tuberculosis (TB) risk might be increased in patients with diabetes by factors other than hyperglycaemia, such as dyslipidaemia. Host lipids are essential energy sources used by mycobacteria to persist in a latent TB state. A potential therapy targeting cholesterol catabolism of mycobacteria has been proposed, but the potential of cholesterol-lowering drugs as anti-TB therapy is unclear. The purpose of this study was to determine the effects of ezetimibe, a 2-azetidinone cholesterol absorption inhibitor, on intracellular mycobacteria survival and dormancy. Intracellular mycobacteria survival was determined by measurements of ATP activity and colony-formation units (CFUs). Gene expression profiles of hypoxia-induced dormant Mycobacterium tuberculosis (Mtb) were analysed by real-time PCR. Flow cytometry and microscopy analysis were used to measure the lipid loads of human macrophages with or without ezetimibe treatment. QuantiFERON-TB Gold In-Tube (QFT-G-IT) assays were performed to diagnose latent TB infection. The levels of intracellular cholesterol/ triglyceride were measured by an enzymatic fluorometric method. Ezetimibe was capable of effectively lowering intracellular growth of Mtb and hypoxia-induced dormant Mtb. There was a significant decrease in Mtb growth in leucocytes from ezetimibe-treated patients with diabetes in terms of ATP levels of intracellular mycobacteria and CFU formation. Also, patients receiving ezetimibe therapy had a lower prevalence of latent TB and had lower intracellular lipid contents. Ezetimibe, which is a currently marketed drug, could hold promise as an adjunctive, host-directed therapy for TB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.