Abstract

We present simulations of extracellular potential patterns elicited by delivering ectopic stimuli to a parallelepipedal slab of ventricular tissue represented as an anisotropic bidomain incorporating epi-endocardial fiber rotation. Simulations were based on an eikonal model that determines wavefront shapes throughout the slab at every time instant during the depolarization phase, coupled with an approximate model of the action potential profile. The endocardial face of the slab was in contact with blood and the composite volume was surrounded by an insulating medium. The effect of a simplified Purkinje network was also studied. (1) For all pacing depths, except endocardial pacing, a central negative area and two potential maxima were observed at QRS onset in all intramural planes parallel to the epicardium. In all planes, the axis joining the two maxima was approximately aligned with the direction of fibers in the plane of pacing. Endocardial pacing generated a different pattern, but only when blood was present; (2) During later stages of excitation, outflowing currents (from the wavefront toward the resting tissue) were always emitted, at all intramural depths, only from those portions of the wavefront that spread along fibers. At any given instant, the position of the two potential maxima in a series of planes parallel to the epicardium and intersecting the wavefront rotated as a function of depth, following the rotating direction of intramural fibers. Purkinje involvement modified the above patterns. Epicardial and endocardial potential maps provided information on pacing site and depth and on subsequent intramural propagation by reflecting the clockwise or counter-clockwise rotation of the deep positivity. Results may be applicable to epicardial and endocardial potential maps recorded at surgery or from endocavitary probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.