Abstract

Beyond the identity and structure of an intermediate, changes in its concentration on and near the electrode surface with time are a critical component to understand and improve selectivity and reactivity in electrochemical transformations. We apply pulsed-potential electrochemical Raman scattering microscopy to measure the potential-dependent temporal evolution of CO formed during electrocatalytic CO2 reduction in acetonitrile on Ag electrodes. At driving potentials positive of the onset potential as determined by cyclic voltammetry, CO accumulates on the electrode surface at time scales longer than 1 s. Near the ensemble onset potential, CO resides on the electrode surface for approximately 100 ms. At potentials known to evolve CO from the electrode surface, CO remains adsorbed on the electrode for less than 10 ms. The time scales accessible in our strategy are nearly 3 orders of magnitude faster than transient Raman or infrared measurements, allowing direct measurement of the temporal evolution of intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.