Abstract
We describe the development of a potato cream recognition system based on radial basis function neural networks from electronic nose and electronic tongue signals. Exhaustive and systematic feature extraction and selection, which are needed because of high dimensionality of signals, are performed on both instruments using various feature selection algorithms. At the end, we design the classifier based on the RBF network, and compare the results obtained from different features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.