Abstract

Multiple sclerosis (MS) is a severely debilitating neurodegenerative diseases marked by progressive demyelination and axonal degeneration in the CNS. Although inflammation is the major pathology of MS, the mechanism by which it occurs is not completely clear. The primary symptoms of MS are movement difficulties caused by conduction block resulting from the demyelination of axons. The possible mechanism of functional loss is believed to be the exposure of potassium channels and increase of outward current leading to conduction failure. 4-Aminopyridine (4-AP), a well-known potassium channel blocker, has been shown to enhance conduction in injured and demyelinated axons. However, 4-AP has a narrow therapeutic range in clinical application. Recently, we developed a new fast potassium channel blocker, 4-aminopyridine-3-methanol (4-AP-3-MeOH). This novel 4-AP derivative is capable of restoring impulse conduction in ex vivo injured spinal cord without compromising the ability of axons to follow multiple stimuli. In the current study, we investigated whether 4-AP-3-MeOH can enhance impulse conduction in an animal model of MS. Our results showed that 4-AP-3-MeOH can significantly increase axonal conduction in ex vivo experimental autoimmune encephalomyelitis mouse spinal cord.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.