Abstract

SummaryAfter the Chernobyl accident in 1986 the fate of radiocaesium from the fallout became of pressing concern. Specific soil amendments, as K fertilizer and specific clay minerals, promised to mitigate the worst effects. We therefore investigated the influence of bentonite and the K status of the soil on the radiocaesium equilibria in soil and on its availability to ryegrass.A sample of a sandy soil was contaminated with 134Cs and amended with K and Ca salts (0–0.97 mmol kg−1) and K bentonite (0–2%). After 4 weeks' incubation of the soil mixtures, ryegrass was grown for 18 weeks in a pot trial and harvested on seven occasions. No significant treatment effects on 134Cs activity concentrations were found at the first and second harvest. From the third harvest onwards, however, 134Cs activity concentrations in the grass were reduced up to twofold (P < 0.05) by increasing rates of K bentonite. Adsorption studies with 137Cs revealed that the radiocaesium interception potential (RIP) of the soil–bentonite mixtures (> 1% bentonite) increased about 10‐fold during plant growth. The RIP of the K bentonite after plant growth was up to 10 times larger than that of pure illite. The formation of specific Cs sorption sites is ascribed to the in situ illitization of the K bentonite. The increase in RIP during plant growth is reflected in a decrease in exchangeable K+ at 2% K bentonite of about 18%. Radiocaesium concentrations in grass could be reliably predicted from the Cs+ and K+ concentrations in the soil solution. Adding K bentonite to a soil contaminated with radiocaesium is effective in fixing Cs in the soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.