Abstract

CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) are promising materials due to their excellent optoelectronic properties. In this work, we show a successful partial and reversible cation exchange reaction between Pb and Mn in both CsPbCl3 NCs and CsMnCl3 NCs systems to yield luminescent CsPb1–xMnxCl3 NCs. By adjusting the reaction time, the photoluminescence from the exciton emission of CsPbCl3 and the electron transition of Mn2+ can be tuned gradually. This work highlights the feasibility of a postsynthetic interconversion of Pb2+ and Mn2+ in cesium lead chloride perovskite nanocrystals, which enables a new strategy to reduce the toxicity and adjust the emissions of CsPbCl3 NCs. In the end, we also discuss the plausible mechanisms for cation exchange in perovskite materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.