Abstract

The mechanisms underlying central post-stroke pain are not well understood and there is no satisfactory treatment. Here, in a rat model of stroke, we measured nociceptive threshold using current stimulation of primary afferent neurons in both hind paws. Male Wistar rats underwent middle cerebral artery occlusion (MCAO) for 50 min. Nociceptive thresholds for Aβ, Aδ and C fiber stimulation (at 2000, 250, and 5 Hz, respectively, using a Neurometer), and neurological deficits, were measured for 23 days after MCAO. Sensory thresholds in both hind paws were significantly lower in MCAO model rats than in control rats for 23 days after MCAO, with the greatest difference seen in Aδ fibers and the smallest in C fibers. Brain infarct area was measured histologically, and the correlation between neurological deficit and infarct size was examined. Neurological deficits were worse in animals with larger infarcts. Furthermore, correlations were observed between infarct size, neurological deficit, and sensory threshold of Aδ fibers 1 day after MCAO. These findings indicate that rats develop hyperalgesia after MCAO and that sensory abnormalities in Aδ fibers after cerebral ischemia may play an important role in post-stroke pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.