Abstract

Eye-opening is a critical point for laminar maturation of pyramidal neurons (PNs) in primary visual cortex. Knowing both the intrinsic properties and morphology of PNs from the visual cortex during development is crucial to contextualize the integration of visual inputs at different age stages. Few studies have reported changes in intrinsic excitability in these neurons but were restricted to only one layer or one stage of cortical development. Here, we used in vitro whole-cell patch-clamp to investigate the developmental impact on electrophysiological properties of layer 2/3 and layer 5 PNs in mouse visual cortex. Additionally, we evaluated the morphological changes before and after eye-opening and compared these in adult mice. Overall, we found a decrease in intrinsic excitability in both layers after eye-opening which remained stable between juvenile and adult mice. The basal dendritic length increased in layer 5 neurons, whereas spine density increased in layer 2/3 neurons after eye-opening. These data show increased number of synapses after onset of sensory input paralleled with a reduced excitability, presumably as homeostatic mechanism. Altogether, we provide a database of the properties of PNs in mouse visual cortex by considering the layer- and time-specific changes of these neurons during sensory development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.