Abstract

Covariance estimation and selection for high-dimensional multivariate datasets is a fundamental problem in modern statistics. Gaussian directed acyclic graph (DAG) models are a popular class of models used for this purpose. Gaussian DAG models introduce sparsity in the Cholesky factor of the inverse covariance matrix, and the sparsity pattern in turn corresponds to specific conditional independence assumptions on the underlying variables. A variety of priors have been developed in recent years for Bayesian inference in DAG models, yet crucial convergence and sparsity selection properties for these models have not been thoroughly investigated. Most of these priors are adaptations/generalizations of the Wishart distribution in the DAG context. In this paper, we consider a flexible and general class of these “DAG-Wishart” priors with multiple shape parameters. Under mild regularity assumptions, we establish strong graph selection consistency and establish posterior convergence rates for estimation when the number of variables $p$ is allowed to grow at an appropriate subexponential rate with the sample size $n$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.