Abstract

abstract In this paper, we propose a novel posterior belief clustering (PBC) algorithm to solve the tradeoff between target tracking performance and sensors energy consumption in wireless sensor networks. We model the target tracking under dynamic uncertain environment using partially observable Markov decision processes (POMDPs), and transform the optimization of the tradeoff between tracking performance and energy consumption into yielding the optimal value function of POMDPs. We analyze the error of a class of continuous posterior beliefs by Kullback–Leibler (KL) divergence, and cluster these posterior beliefs into one based on the error of KL divergence. So, we calculate the posterior reward value only once for each cluster to eliminate repeated computation. The numerical results show that the proposed algorithm has its effectiveness in optimizing the tradeoff between tracking performance and energy consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.