Abstract

We present a family of birational transformations in $ CP_2$ depending on two, or three, parameters which does not, generically, preserve meromorphic two-forms. With the introduction of the orbit of the critical set (vanishing condition of the Jacobian), also called ``post-critical set'', we get some new structures, some "non-analytic" two-form which reduce to meromorphic two-forms for particular subvarieties in the parameter space. On these subvarieties, the iterates of the critical set have a polynomial growth in the \emph{degrees of the parameters}, while one has an exponential growth out of these subspaces. The analysis of our birational transformation in $ CP_2$ is first carried out using Diller-Favre criterion in order to find the complexity reduction of the mapping. The integrable cases are found. The identification between the complexity growth and the topological entropy is, one more time, verified. We perform plots of the post-critical set, as well as calculations of Lyapunov exponents for many orbits, confirming that generically no meromorphic two-form can be preserved for this mapping. These birational transformations in $ CP_2$, which, generically, do not preserve any meromorphic two-form, are extremely similar to other birational transformations we previously studied, which do preserve meromorphic two-forms. We note that these two sets of birational transformations exhibit totally similar results as far as topological complexity is concerned, but drastically different results as far as a more ``probabilistic'' approach of dynamical systems is concerned (Lyapunov exponents). With these examples we see that the existence of a preserved meromorphic two-form explains most of the (numerical) discrepancy between the topological and probabilistic approach of dynamical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.