Abstract

Summary Severe borehole-stability problems were encountered in a recent exploration well in the Norwegian North Sea. The problems occurred when drilling through Tertiary shale sections interbedded with permeable sand layers. Drilling was initially performed with water-based mud (WBM). However, because the section target was not able to be reached after more than 2 weeks of operation, the section was plugged back, and a sidetrack was drilled with an oil-based mud (OBM) without encountering major operational problems. On the basis of the post-drill analysis of drilling data, well logs, drill cuttings, and borehole cavings sampled from the well, this paper describes how the complex combination of drilling-fluid salt concentration and geological constraints may be used to ensure successful future drilling operations in this part of the North Sea. Cuttings and preserved cavings collected during the drilling operation were selected from several depth intervals identified as potentially troublesome from drilling experience and log data. The determination of cuttings mineralogy enabled a better prediction of how the time dependency of the stable drilling-fluid-density window is influenced by an interaction between the shale and the drilling fluid. Mechanical strength is a key input parameter when predicting borehole stability. Dedicated rock-mechanical punch measurements on cavings were used to confirm the prediction of strength from log data alone. The examination of caving surfaces revealed the possible presence of in-situ-fractured rock. Such fractures would require special measures while drilling to maintain stability. Subsequently, a borehole-stability sensitivity analysis was performed that focused on time-dependent stability in the shale formations. The analysis used cuttings and cavings properties and logs as input. In particular, the modeling showed how the optimal potassium chloride (KCl) concentration in the drilling fluid changes with depth. The modeling further identified a relatively large sensitivity toward borehole inclination—even at fairly small inclinations. This paper thus illustrates the significance of properly accounting for rock-mechanical aspects when planning new wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.