Abstract

BackgroundClinical and experimental studies suggest that the probiotic mixture VSL#3 has protective activities in the context of inflammatory bowel disease (IBD). The aim of the study was to reveal bacterial strain-specific molecular mechanisms underlying the anti-inflammatory potential of VSL#3 in intestinal epithelial cells (IEC).Methodology/Principal FindingsVSL#3 inhibited TNF-induced secretion of the T-cell chemokine interferon-inducible protein (IP-10) in Mode-K cells. Lactobacillus casei (L. casei) cell surface proteins were identified as active anti-inflammatory components of VSL#3. Interestingly, L. casei failed to block TNF-induced IP-10 promoter activity or IP-10 gene transcription at the mRNA expression level but completely inhibited IP-10 protein secretion as well as IP-10-mediated T-cell transmigration. Kinetic studies, pulse-chase experiments and the use of a pharmacological inhibitor for the export machinery (brefeldin A) showed that L. casei did not impair initial IP-10 production but decreased intracellular IP-10 protein stability as a result of blocked IP-10 secretion. Although L. casei induced IP-10 ubiquitination, the inhibition of proteasomal or lysosomal degradation did not prevent the loss of intracellular IP-10. Most important for the mechanistic understanding, the inhibition of vesicular trafficking by 3-methyladenine (3-MA) inhibited IP-10 but not IL-6 expression, mimicking the inhibitory effects of L. casei. These findings suggest that L. casei impairs vesicular pathways important for the secretion of IP-10, followed by subsequent degradation of the proinflammatory chemokine. Feeding studies in TNFΔARE and IL-10−/− mice revealed a compartimentalized protection of VSL#3 on the development of cecal but not on ileal or colonic inflammation. Consistent with reduced tissue pathology in IL-10−/− mice, IP-10 protein expression was reduced in primary epithelial cells.Conclusions/SignificanceWe demonstrate segment specific effects of probiotic intervention that correlate with reduced IP-10 protein expression in the native epithelium. Furthermore, we revealed post-translational degradation of IP-10 protein in IEC to be the molecular mechanism underlying the anti-inflammatory effect.

Highlights

  • Inflammatory bowel diseases (IBD) are spontanously relapsing, immunologically mediated disorders of the gastrointestinal tract

  • The present study shows for the first time bacterial strainspecific effects of the clinically relevant probiotic mixture VSL#3 on the expression of a pro-inflammatory chemokine in primary mouse/day) or placebo for 15 weeks

  • Ileal intestinal epithelial cells (IEC) were isolated and pooled proteins (50 mg) of all mice in a group were analyzed for induced protein 10 (IP-10) expression by Western blot. (C) The presence of VSL#3 derived S. thermophilus (S.t) in the gut of the TNFDARE mice was examined by bacteria-specific PCR analysis. doi:10.1371/journal.pone.0004365.g007

Read more

Summary

Introduction

Inflammatory bowel diseases (IBD) are spontanously relapsing, immunologically mediated disorders of the gastrointestinal tract. Apart from its protective effect in clinical studies, VSL#3 was shown to reduce experimental colitis in IL-10-deficient (IL-102/2) mice. There is no study showing protective effects of VSL#3 in the context of CD or experimental ileitis, suggesting disease-and intestinal segment-specific effects of VSL#3. Extensive progress has been made in understanding probiotic effects of VSL#3 in the context of IBD but the molecular mechanisms as well as strain-specificity remain to be elucidated. Clinical and experimental studies suggest that the probiotic mixture VSL#3 has protective activities in the context of inflammatory bowel disease (IBD). The aim of the study was to reveal bacterial strain-specific molecular mechanisms underlying the anti-inflammatory potential of VSL#3 in intestinal epithelial cells (IEC)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.