Abstract

Long-duration exposure to the space environment causes physical adaptations that are deleterious to optimal functioning on Earth. Post-mission rehabilitation traditionally concentrates on regaining general muscle strength, neuromuscular control, and lumbo-pelvic stability. A particular problem is muscle imbalance caused by the hypertrophy of the flexor and atrophy of the extensor and local lumbo-pelvic muscles, increasing the risk of post-mission injury. A method currently used in European human spaceflight to aid post-mission recovery involves a motor control approach, focusing initially on teaching voluntary contraction of specific lumbo-pelvic muscles and optimizing spinal position, progressing to functional retraining in weight bearing positions. An alternative approach would be to use a Functional Readaptive Exercise Device to appropriately recruit this musculature, thus complementing current rehabilitation programs. Advances in post-mission recovery of this nature may both improve astronaut healthcare and aid terrestrial healthcare through more effective treatment of low back pain and accelerated post bed rest rehabilitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.