Abstract
Specificity and sensitivity of positron emission tomography (PET) radiopharmaceuticals targeting fibrillar amyloid-β (Aβ) deposits is high for detection of neuritic Aβ plaques, a mature form of Aβ deposits which often have dense Aβ core (i.e., cored plaques). However, imaging-to-autopsy validation studies of amyloid PET radioligands have identified several false positive cases all of which had mainly diffuse Aβ plaques (i.e., plaques without neuritic pathology or dense amyloid core), and high amyloid PET signal was reported in the striatum where diffuse plaques predominate in Alzheimer’s disease (AD). Relative contributions of different plaque types to amyloid PET signal is unclear, particularly in neocortical areas where they are intermixed in AD. In vitro binding assay and autoradiography were performed using [3H]flutemetamol and [3H]Pittsburgh Compound-B (PiB) in frozen brain homogenates from 30 autopsy cases including sporadic AD and non-AD controls with a range of brain Aβ burden and plaque density. Fixed tissue sections of frontal cortex and caudate from 10 of the AD cases were processed for microscopy using fluorescent derivatives of flutemetamol (cyano-flutemetamol) and PiB (cyano-PiB) and compared to Aβ immunohistochemistry and pan-amyloid (X-34) histology. Using epifluorescence microscopy, percent area coverage and fluorescence output values of cyano-PiB- and cyano-flutemetamol-labeled plaques in two-dimensional microscopic fields were then calculated and combined to obtain integrated density measurements. Using confocal microscopy, we analysed total fluorescence output of the entire three-dimensional volume of individual cored plaques and diffuse plaques labeled with cyano-flutemetamol or cyano-PiB. [3H]Flutemetamol and [3H]PiB binding values in tissue homogenates correlated strongly and their binding pattern in tissue sections, as seen on autoradiograms, overlapped the pattern of Aβ-immunoreactive plaques on directly adjacent sections. Cyano-flutemetamol and cyano-PiB fluorescence was prominent in cored plaques and less so in diffuse plaques. Across brain regions and cases, percent area coverage of cyano-flutemetamol-labeled plaques correlated strongly with cyano-PiB-labeled and Aβ-immunoreactive plaques. For both ligands, plaque burden, calculated as percent area coverage of all Aβ plaque types, was similar in frontal cortex and caudate regions, while integrated density values were significantly greater in frontal cortex, which contained both cored plaques and diffuse plaques, compared to the caudate, which contained only diffuse plaques. Three-dimensional analysis of individual plaques labeled with either ligand showed that total fluorescence output of a single cored plaque was equivalent to total fluorescence output of approximately three diffuse plaques of similar volume. Our results indicate that [18F]flutemetamol and [11C]PiB PET signal is influenced by both diffuse plaques and cored plaques, and therefore is likely a function of plaque size and density of Aβ fibrils in plaques. Brain areas with large volumes/frequencies of diffuse plaques could yield [18F]flutemetamol and [11C]PiB PET retention levels comparable to brain regions with a lower volume/frequency of cored plaques.
Highlights
Development of positron emission tomography (PET) radiopharmaceuticals targeting fibrillar amyloid-β (Aβ) has enabled imaging of Aβ deposits in brains of livingActa Neuropathologica (2020) 140:463–476 people clinically suspected of having Alzheimer’s disease (AD)
These three Food and Drug Administration (FDA)-approved PET radiopharmaceuticals for imaging of Aβ plaques were evaluated for sensitivity and specificity of visual inspection of retention maps against the presence of neuritic Aβ plaques due to the central role of these lesions in neuropathology criteria for AD defined by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) [30] and National Institute on Aging-Reagan Institute [41]
Near the time the FDA-approved 18F-labeled Aβ ligands, neuropathological criteria for AD were updated by the National Institute on Aging-Alzheimer’s Association (NIA-AA) [14, 31] to include both CERAD criteria for scoring of neuritic Aβ plaques [30] and Thal phases which rely on immunohistochemical detection of all types of Aβ plaques [40]
Summary
Development of positron emission tomography (PET) radiopharmaceuticals targeting fibrillar amyloid-β (Aβ) has enabled imaging of Aβ deposits (plaques) in brains of livingActa Neuropathologica (2020) 140:463–476 people clinically suspected of having Alzheimer’s disease (AD). The development of Aβ binding agents labeled with longer living fluorine-18, including [18F]PiB (flutemetamol/VizamylTM [8, 43]), florbetapir (AmyvidTM [7, 47]), and florbetaben (NeuraceqTM [1, 36]) offers an opportunity for assessment of Aβ plaques in a clinical setting These three Food and Drug Administration (FDA)-approved PET radiopharmaceuticals for imaging of Aβ plaques were evaluated for sensitivity and specificity of visual inspection of retention maps against the presence of neuritic Aβ plaques due to the central role of these lesions in neuropathology criteria for AD defined by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) [30] and National Institute on Aging-Reagan Institute [41]. A better understanding of the contribution of different Aβ plaque types to amyloid PET ligand retention is of upmost importance as the field progresses to using regional uptake measures [12, 28] to characterize the initial and later phases of Aβ deposition as well as exploring the possibilities that regional measures can be used to predict possible changes in clinical state [32, 40]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.