Abstract

Results of a post-growth rapid thermal annealing (RTA) on GaAs proximity-capped structures with high density (∼10 11 cm −2) of self-assembled InAs/GaAs quantum dots (QDs) are presented. Features due to the QDs, bi-dimensional platelets (2DP) and InAs wetting layer (WL) were identified in photoluminescence (PL) spectrum of the as-grown sample. It is shown, using transmission electron microscopy, that RTA at temperature up to 700 °C (for 30 s) results in an increase of QDs lateral sizes. After RTA at 800 °C or higher temperatures, no QDs can be distinguished and substantial thickening of the WL can be seen. The main PL peak blueshifts as a result of RTA in all investigated temperature ranges, which is accompanied by a quenching of the 2DP and WL PL. It is proposed that the main PL peak, which is due to the QDs in the as-grown sample, results from optical recombination in the modified WL in the samples, after RTA at 800 °C and higher temperatures. Laterally-enhanced Ga/In interdiffusion induced by strain is proposed to explain a relatively fast dissolution of QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.