Abstract

SUMMARYThis paper presents a novel scheme for achieving attitude control of a tumbling combination system in the post-capture phase of a tethered space robot (TSR). Given the combination rotation characteristics, tether force is applied to provide greater control torques for stabilising the attitude. The proposed control scheme involves two attitude controllers, which coordinate the controller of the tether force and thruster force and the controller of single thruster force. The numerical simulations include a comparison between this coordinated control and the traditional thruster control and a sensitivity analysis on initial values of parameters. Simulation results validate the feasibility of the attitude control scheme for a tumbling combination system, and fuel consumption of the attitude control is efficiently reduced using the coordinated control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.