Abstract
The use of a highly efficient reductive amination procedure for the postsynthetic end-capping of metal-templated helicate and tetrahedral supramolecular structures bearing terminal aldehyde groups is reported. Metal template formation of a [Fe2L3](4+) dinuclear helicate and two [Fe4L6](8+) tetrahedra (where L is a linear ligand incorporating two bipyridine domains separated by one or two 1,4-(2,5-dimethoxyaryl) linkers and terminated by salicylaldehyde functions is described. Postassembly reaction of each of these "open" di- and tetranuclear species with excess ammonium acetate (as a source of ammonia) and sodium cyanoborohydride results in a remarkable reaction sequence whereby the three aldehyde groups terminating each end of the helicate, or each of the four vertices of the respective tetrahedra, react with ammonia then undergo successive reductive amination to yield corresponding fully tertiary-amine capped cryptate and tetrahedral covalent cages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.