Abstract

Abstract The large-scale jet of quasar 3C 273 has been observed in radio to gamma-ray frequencies. Earlier the X-ray emission from knot A of this jet has been explained with inverse Compton scattering of the cosmic microwave background radiations by the shock accelerated relativistic electrons in the jet. More recently it has been shown that this mechanism overproduces the gamma-ray flux at GeV energy and violates the observational results from Fermi LAT. We have considered the synchrotron emission from a broken power-law spectrum of accelerated protons in the jet to explain the observed X-ray to gamma-ray flux from knot A. The two scenarios discussed in our work are (i) magnetic field is high, synchrotron energy loss time of the protons is shorter than their escape time from the knot region and the age of the jet and (ii) their escape time is shorter than their synchrotron energy loss time and the age of the jet. These scenarios can explain the observed photon spectrum well for moderate values of Doppler factor. The required jet luminosity is high ∼1046 erg s−1 in the first scenario and moderate ∼1045 erg s−1 in the second, which makes the second scenario more favourable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.