Abstract
The microscopic origin of the various phase transitions which have been observed in g-Na 0.33 V 2 O 5 and its analogues can be explored experimentally by investigating the oxygen isotope effect on the phase transition temperatures. An absent oxygen isotope effect on the sodium-ordering transition would point to an antiferroelectrically driven instability, while a large isotope effect on the charge ordering and spin ordering transition temperatures would suggest the formation of a charge-density wave instability and phonon mediated long-range magnetic ordering. All instabilities can be attributed to strong electron-phonon interaction effects, which dominate the ground-state properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.