Abstract

This study investigates the optimal projectile/target combination for the production of new neutron-deficient isotopes of superheavy nuclei (SHN). To this end, the dependence of the evaporation residue cross-section (ERCS) used to synthesize SHN on the mass asymmetry and the isospin of colliding nuclei are analyzed within the dinuclear system (DNS) concept. The predicted ERCSs for the production of new neutron-deficient isotopes of SHN were found to be quite large with the 36S projectile, and the cross-section of SHN decreases slowly with the charge of compound nuclei owing to the increase in their survival probability, . Wsur is not canceled by the decreasing probability, PCN, that the system will evolve from a touching configuration to the compound nucleus in competition with the quasifission process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.