Abstract

Bayesian filtering is a popular class of estimation algorithms for addressing the space object tracking problem. Bayesian filters assume a random physical system with known statistics of various uncertainty sources. The major challenge is that the exact knowledge of some random process may not be available for analysis, preventing us from performing a probabilistic characterization of the epistemic uncertainty components. In this paper, we explore the use of the Outer Probability Measures (OPMs) to achieve a faithful uncertainty representation derived from all available yet imperfect information in the process of space object tracking. Leveraging the concepts of OPMs, a refined Possibilistic Admissible Region approach is proposed, in which the initial orbital state is modeled using a novel parameter estimation method. The OPM filter is employed to integrate different types of data sources in the presence of assumed ignorance. The efficacy of the developed method is validated by several space object tracking scenarios using real radar measurements and two-line elements data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.