Abstract

Possibility theory is applied to introduce and reason about the fundamental notion of a key for uncertain data. Uncertainty is modeled qualitatively by assigning to tuples of data a degree of possibility with which they occur in a relation, and assigning to keys a degree of certainty which says to which tuples the key applies. The associated implication problem is characterized axiomatically and algorithmically. Using extremal combinatorics, we then characterize the families of non-redundant possibilistic keys that attain maximum cardinality. In addition, we show how to compute for any given set of possibilistic keys a possibilistic Armstrong relation, that is, a possibilistic relation that satisfies every key in the given set and violates every possibilistic key not implied by the given set. We also establish an algorithm for the discovery of all possibilistic keys that are satisfied by a given possibilistic relation. It is shown that the computational complexity of computing possibilistic Armstrong relations is precisely exponential in the input, and the decision variant of the discovery problem is NP-complete as well as W[2]-complete in the size of the possibilistic key. Further applications of possibilistic keys in constraint maintenance, data cleaning, and query processing are illustrated by examples. The computation of possibilistic Armstrong relations and discovery of possibilistic keys from possibilistic relations have been implemented as prototypes. Extensive experiments with these prototypes provide insight into the size of possibilistic Armstrong relations and the time to compute them, as well as the time it takes to compute a cover of the possibilistic keys that hold on a possibilistic relation, and the time it takes to remove any redundant possibilistic keys from this cover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.