Abstract

Bayesian games offer a suitable framework for games where the utility degrees are additive in essence. This approach does nevertheless not apply to ordinal games, where the utility degrees do not capture more than a ranking, nor to situations of decision under qualitative uncertainty. This paper proposes a representation framework for ordinal games under possibilistic incomplete information (π-games) and extends the fundamental notion of Nash equilibrium (NE) to this framework. We show that deciding whether a NE exists is a difficult problem (NP-hard) and propose a Mixed Integer Linear Programming (MILP) encoding. Experiments on variants of the GAMUT problems confirm the feasibility of this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.