Abstract
BackgroundThrough the clinical use of positron emission tomography, we aimed to elucidate the complex relationship between glucose uptake and squamous cell oral cancer (ScOC) growth, along with its mechanism with respect to tissue blood flow (tBF).Material/MethodsWe retrospectively reviewed a total of 69 newly diagnosed ScOC patients by Fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). Maximum and mean standard uptake values (SUV↑ and ) were recorded to assess glucose uptake. Multi-shot spin-echo echo-planar imaging-based pseudo-continuous arterial spin labeling (pcASL) technique at 3.0 T MRI was used to obtain tBF values in ScOC (tBF-ScOC). Patients were divided according to T-stage and location. Pearson’s correlation coefficients were calculated between both SUV and tBF-ScOC for significant correlations.ResultsForty-one (59.4%) patients had oropharynx and the other 28 (40.6%) patients had laryngopharynx. Significant positive correlations were detected between SUV↑, , tBF-ScOC and non-advanced T-stage (T1a, T1b, T2 and T3), while a negative correlation was observed in the advanced T-stage (T4a and T4b).ConclusionsUsing PET imaging, we established the relationship between glucose uptake and ScOC growth on the basis of the division of T-stage and tumor location of ScOC, thereby elucidating the underlying mechanism. Our findings provide insights important to the diagnosis, treatment, and care of ScOC patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical science monitor : international medical journal of experimental and clinical research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.