Abstract

The cerebral metabolic effects of a massive dose of thiopental (177 mg/kg) were investigated in seven dogs. The systemic circulation was supported with an extracorporeal circuit. At an infusion rate of 2 mg/kg/min, cerebral oxygen consumption (CMR(O(2))) decreased progressively until cerebral electrical silence was produced. This occurred after a mean dose of 72 mg/kg, which caused a mean decrease in CMR(O(2)) to 58% of the control value (measured at 1.5% halothane inspired). Thereafter, despite continued at 4 mg/kg/min, CMR(O(2)) did not decrease further. The oxygen-glucose index never changed during the infusion period and, at the termination of the infusion, brain assays for ATP, phosphocreatine, lactate, and pyruvate revealed normal concentrations. It is concluded that there was no alteration in normal cerebral metabolic pathways, that cerebral metabolic effects of thiopental are secondary to functional effects, that thiopental would provide no cerebral protection during hypoxia sufficient to abolish cerebral function, and that thiopental does not uncouple oxidative phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.