Abstract

Estrogen receptors (ER) and nuclear factor-kappaB (NF-kappaB) are known to play important roles in breast cancer, but these factors are generally thought to repress each other's activity. However, we have recently found that ER and NF-kappaB can also act together in a positive manner to synergistically increase gene transcription. To examine the extent of cross-talk between ER and NF-kappaB, a microarray study was conducted in which MCF-7 breast cancer cells were treated with 17beta-estradiol (E(2)), tumor necrosis factor alpha (TNFalpha), or both. Follow-up studies with an ER antagonist and NF-kappaB inhibitors show that cross-talk between E(2) and TNFalpha is mediated by these two factors. We find that although transrepression between ER and NF-kappaB does occur, positive cross-talk is more prominent with three gene-specific patterns of regulation: (a) TNFalpha enhances E(2) action on approximately 30% of E(2)-upregulated genes; (b) E(2) enhances TNFalpha activity on approximately 15% of TNFalpha-upregulated genes; and (c) E(2) + TNFalpha causes a more than additive upregulation of approximately 60 genes. Consistent with their prosurvival roles, ER and NF-kappaB and their target gene, BIRC3, are involved in protecting breast cancer cells against apoptosis. Furthermore, genes positively regulated by E(2) + TNFalpha are clinically relevant because they are enriched in luminal B breast tumors and their expression profiles can distinguish a cohort of patients with poor outcome following endocrine treatment. Taken together, our findings suggest that positive cross-talk between ER and NF-kappaB is more extensive than anticipated and that these factors may act together to promote survival of breast cancer cells and progression to a more aggressive phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.