Abstract

In the past, specificity and affinity were the priority for synthetic antibody library. However, therapeutic antibodies need good stability for medical use. Through carefully adjust the chemical diversity in CDRs, one hopes to design a synthetic antibody library with good developability. Here we thoroughly analyzed 296 nanobody sequences and structures, constructed a fully-functional synthetic nanobody library, evaluated the relationship between aggregation and isoelectric point, and found that high-pI nanobodies were more resistant to aggregation than low-pIs. As we used the same framework for constructing the library, CDRs charge played a crucial role in mediating nanobody aggregation. We also analyzed the theoretical pI of 296 nanobodies from PDB, about 75% had basic pI, only 25% were acidic. Those results provided useful guidelines for designing next-generation synthetic nanobody libraries and for identifying potent and safe nanobody therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.