Abstract

AbstractThis paper offers a geometric framework for modeling port-Hamiltonian systems on discrete manifolds. The simplicial Dirac structure, capturing the topological laws of the system, is defined in terms of primal and dual cochains related by the coboundary operators. This finite-dimensional Dirac structure, as discrete analogue of the canonical Stokes-Dirac structure, allows for the formulation of finite-dimensional port-Hamiltonian systems that emulate the behaviour of the open distributed-parameter systems with Hamiltonian dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.