Abstract
The extremal dependence of defaults, and negative correlation between defaults and their recovery rates, are of major interest in modeling portfolio credit risk. In order to incorporate these two features, we propose a portfolio credit risk model with random recovery rates. The proposed model is an extension of the traditional t-copula model for the credit portfolio with constant recovery rates. A skew-normal copula model is adopted to represent dependent random recovery rates. In our proposed model, various types of dependency between the defaults and their recovery rates are possible, including an inverse relation. We also propose a conditional Monte Carlo simulation algorithm for estimating the probability of a large loss in the model, and an importance sampling version of it. We show that the proposed Monte Carlo simulation algorithm is relatively efficient compared with the plain Monte Carlo simulation. Numerical results are presented to show the performance and efficiency of the algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.