Abstract

Ultrathin 2Dnanomaterials have attracted extensive attention due to their fascinating applications in sustainable and clean-energy-related devices, but obtaining ultrathin 2D multimetallic polycrystalline structures with large lateral dimensions remains a challenge. In this study, ultrathin 2D porous PtAgBiTe and PtBiTe polycrystalline nanosheets (PNSs) are obtained via a visible-light-photoinduced Bi2 Te3 -nanosheet-mediated route. The PtAgBiTe PNSs are assembled by sub-5nm grains with widths beyond 700nm. Strain and ligand effects originating from the porous, curly polycrystalline structure endow the PtAgBiTe PNSs with robust hydrazine hydrate oxidation reaction activity. Theoretical research demonstrates that the modified Pt activates the N-H bonds in N2 H4 during the reaction, and strong hybridization between Pt-5d and N-2p facilitates dehydrogenation while reducing energy consumption. The peak power densities of the PtAgBiTe PNSs in actual hydrazine-O2 /air fuel cell devices are boosted to 532.9/315.9mW cm-2 , while those of the commercial Pt/C are 394.7/157.9mW cm-2 . This work provides a strategy not only for preparing ultrathin multimetallic PNSs but also for finding promising electrocatalysts for actual hydrazine fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.