Abstract

Application of electric fields as a mechanism against membrane fouling is an emerging cleaning process for membranes. Sintering of ultrahigh molecular weight polyethylene powder particles decorated with multiwalled carbon nanotubes (MWCNT) is performed to produce electrically conductive porous filtration membranes. The contact of the molten particle surfaces leads to their fusion through neck formation during sintering. As the MWCNT only cover the surface of the powder particles, they form a conductive network with a high number of inter‐MWCNT contacts in pathways through the polymer matrix. Membranes with an electrical conductivity of 0.9 S m−1 at a MWCNT concentration of 5.0 wt% are prepared. Additionally, a comparison of sintered and compression molded samples shows that after the heating interval, crystallization during cooling strongly influences the formation of the MWCNT network. The study reveals that electrically conductive, porous polymer membranes for microfiltration applications can be prepared using a solvent‐free process. image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.