Abstract

Ilmenite (FeTiO3) is an inexpensive abundant natural mineral and it would be a perfect precursor for the production of porous TiO2 if a suitable synthesis method was developed. A new method combining a series of processing steps of ball milling, high-temperature annealing, selective chemical leaching and final calcining in air is proposed in this paper. The resulting TiO2 is a porous material with a bimodal pore structure. The pore size distribution has two clear maxima corresponding to small mesopores (2–30 nm) and large meso- and macropores (centered at around 50–80 nm). It was found that the duration of the annealing step could alter the contribution of each type of pores. A short annealing time (0.5 h) lead to the preferential formation of pores within 2–30 nm while pores centered at 50–80 nm dominated the pore size distribution after a relatively long annealing (1.5 h). The obtained porous rutile TiO2 shows a better photocatalytic activity than that of a commercial rutile TiO2 powder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.