Abstract

Epimerization of sugars is a carbon-efficient route not only to produce rare carbohydrates but also to extend the product scope for chemical production in future biorefineries. Industrially available catalysts for epimerization are limited mainly to soluble Mo(VI) species as well as substrate-specific epimerases. Here we report highly active and selective tin-organic frameworks (Sn-OF) as solid catalysts for the epimerization of aldoses at the C-2 position, such as the conversion of glucose to mannose. The reaction proceeds via a carbon skeleton rearrangement, that is, through breaking of a C-2/C-3 carbon bond and formation of a C-1/C-3 bond. Partially hydrolyzed Ph3Sn-OH sites were found to be the catalytically active centers. Our results suggest that the high catalytic activity of Sn-OFs for the epimerization is determined by (1) Lewis acidity of tin; (2) free Sn-OH groups; and (3) the high hydrophobicity of organic linkers applied in the aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.