Abstract

Abstract The porous spherical LiFePO4·LiMnPO4·Li3V2(PO4)3@C@rGO (Sample-G) composites are prepared via a spray drying process. The results show that the composites consist of orthorhombic olivine-type LiFe0.5Mn0.5PO4 and monoclinic Li3V2(PO4)3, which are evenly distributed. In particular, nanoparticles are embedded in graphene nanosheets, which are interconnected and stacked to form a porous sphere structure with an interior three-dimensional conductive network, resulting in the huge improvement on electrochemical performance and structural stability. Due to the increased Li+ diffusion coefficient, the composite possesses 98.6 and 82.9 mAh g−1 with capacities retention of 81.6% and 71.8% at 10 and 20C after 1000 cycles, respectively. The mutual cross-doping effect between LFP·LMP·LVP and a porous sphere structure with a 3D conductive network inside provides a practical method for improving the cycling and rate performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.