Abstract
Solvothermal reactions of Zn(NO3)2·6H2O and alkali (Na, K) chloride with the trigonal-planar ligand benzene-1,3,5-tribenzoic acid (H3BTB) gave rise to two new crystalline porous metal−organic frameworks (MOFs), [Zn3Na2O(BTB)2(DMF)2](DMF)(H2O) and [Zn2K3(BTB)2(HCOO)(DMF)3](DMF)3(H2O)2, respectively. Both phases have Zn3Na2(μ4-O) and Zn2K2(HCOO) clusters as molecular building block nodes, and they form similar alkali-bridged 2-fold interpenetrated, (3,6)-connected nets with the mineral rtl-c topology. The alkali-bridged interpenetration reduces the flexibility of their interpenetrated nets, affording permanent porosity and high thermal stability. These two MOFs also exhibit high capacities of hydrogen uptake and strong solid fluorescent emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.