Abstract
The utilization of uranium (U) fission energy as a high-density, clean power source plays a pivotal role in mitigating greenhouse gas emissions. Uranium extraction from seawater exhibits superior environmental friendliness compared to terrestrial uranium mining, as it avoids substantial generation of radioactive waste and harmful chemicals. However, conventional adsorbents such as fiber, polymer, and biomass materials exhibit slow adsorption rates and low ion selectivity. Porous frameworks with large inner surface, full host-guest interaction, and site utilization are utilized to improve uranium absorption performance. Consequently, devising and synthesizing materials that enable efficient and cost-effective extraction of U(VI) from seawater poses a formidable challenge. Recently, there has been a considerable surge in academic interest regarding the synthesis and design of porous frameworks. By integrating experimental data, spectroscopic analysis, and theoretical calculations, we have conducted an extensive investigation into the actual performance, underlying principles, and practicality of conventional materials (such as fibers) and novel porous materials serving as adsorbents, photocatalysts, and electrocatalysts for U(VI) extraction from seawater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.