Abstract

XOFs-type materials (X=M, C, S, that is, metal-organic frameworks, covalent organic frameworks and supramolecular organic frameworks, respectively) share a common unifying feature: mutual spatial orientation of constituting components is strictly directional and unchanging by design. Herein, we illustrate an alternate design for porous architectures, as rigid joints constituted by coordinative (MOFs), covalent (COFs), or hydrogen-donor/acceptor (SOFs) bonds, are replaced by supramolecular ball joints, which confer unprecedented flexibility, especially angular, to porous networks. The obtained frameworks remain highly organized but are also permutable: lacking a forced convergence towards an immutable minimum energy structure, these systems remain able to adjust depending on external conditions. Results of POF (permutable organized framework) synthesis is a family of structures rather than a single pre-determined three-dimensional arrangement, as we demonstrate with an illustrative set of 5 XRD structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.