Abstract

Porous and non-porous cellulose acetate (CA) – cellulose nanocrystal (CNC) electrospun nanocomposite fibers and electrosprayed-electrospun composite membranes were fabricated using two different binary solvent systems. To evaluate the expression of CNC as the active entity in the membrane, dye adsorption studies were carried out using Victoria Blue. To overcome the low surface area of thick porous fibers, a porous electrosprayed-electrospun composite has developed which exhibited 98% dye removal compared to non-porous counterparts (67.9%). The porous membrane with CNC showed an increase of 38mV in surface zeta potential compared to 9mV increases in the case of the nonporous membrane and after the dye adsorption, it maintained the negative charge, indicating that further adsorption is feasible. Moreover, the mechanical properties of porous fibers were found to be ten-fold better than that of nonporous fibers. Creating porous CA-CNC composites is demonstrated as a tool for ensuring better exposure of active materials during the adsorption reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.