Abstract

Porous carbon (PC) was easily prepared by synthesis of a metal–organic framework (MOF-5) followed by carbonization step. The morphology, structure, Brunauer-Emmett-Teller (BET) surface areas, wettability, and electrochemical performance for PCs carbonized at different temperatures from 500 to 1000°C were characterized by the techniques of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), N2 adsorption-desorption, contact angle of glycerin, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), and compared with a commercially available activated carbon (AC). The results showed that MOF-5 was fully carbonated at 900°C, having the highest specific surface area of 1563.09m2g−1 and the largest pore volume of 1.07cm3g−1. The PC carbonized at 900°C (PC-900) exhibited better wettability, a higher specific capacity and a lower charge transfer resistance than other PCs and AC. In further capacitive deionization (CDI) process, the PC-900 electrode exhibited 9.39mgg−1 CDI capacity, significantly higher than 5.47mgg−1 of AC electrode. More importantly, easy and good repeatability could be obtained for PC-900 electrode. This study suggests that the PC-900 derived from MOF-5 may be a potential electrode material for CDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.