Abstract
Recent reports suggest the utility of extracellular matrix (ECM) molecules as raw components in scaffolding of engineered materials. However, rapid and tunable manufacturing of ECM molecules into fibrous structures remains poorly developed. Here we report on an immersion rotary jet-spinning (iRJS) method to show high-throughput manufacturing (up to ∼1 g/min) of hyaluronic acid (HA) and other ECM fiber scaffolds using different spinning conditions and postprocessing modifications. This system allowed control over a variety of scaffold material properties, which enabled the fabrication of highly porous (70-95%) and water-absorbent (swelling ratio ∼2000-6000%) HA scaffolds with soft-tissue mimetic mechanical properties (∼0.5-1.5 kPa). Tuning these scaffolds' properties enabled the identification of porosity (∼95%) as a key facilitator for rapid and in-depth cellular ingress in vitro. We then demonstrated that porous HA scaffolds accelerated granulation tissue formation, neovascularization, and reepithelialization in vivo, altogether potentiating faster wound closure and tissue repair. Collectively, this scalable and versatile manufacturing approach enabled the fabrication of tunable ECM-mimetic nanofiber scaffolds that may provide an ideal first building block for the design of all-in-one healing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.